
, / " ,¢, _.

Ninth International Workshop on Program Comprehension (IWPC 2001)

May 12-13, 2001 - Toronto, Ontario, Canada- Westin Harbour Castle Hotel

Co-located with ICSE 2001

CALL FOR PAPERS

General chair

Ric Holt

Dep. of Computer Science

University of Waterloo, Canada

Kmail: holt @plg.uwaterloo.ca

Programco-chairs

Kostas Kontogiannis

Dep. of Electrical and Computer Engineering

University of Waterloo, Canada

E-mall: kostas @swen.uwaterloo.ca

Andrea De Lucia

Faculty of Engineering

University of Sannio, Benevento, Italy

Dmail: delucia@unisarmio.it

Sponsored by:

IEEE, IEEE Computer Society, IEEE Computer

Society TCSE

In cooperation with:

• University of Waterloo, Ontario, Canada

• University of Sannio, Benevento, Italy

• University of Toronto, Ontario, Canada

• University of Victoria, British Columbia, Canada

Conference location

IWPC 2001 will be held in Toronto, Ontario, Canada

at the Westin Harbour Castle Hotel, c.o-located with

ICSE 2001. Please, see the ICSE 2001 web

page (htlp'Y/www__'_uvie.cah_e20O 1/_ for more

information.

Submissions deadlines

• Papers: November 15,2000

• Tool demo proposals: December 15, 2000

• Working session proposals: Deceml_ 15, 2000

Acceptance notification: January 15, 2001

Camera ready copy due: February 20, 2001

Electronic submission guidelines

To submit a paper, a tool demo, or a working session

proposal, please send an e-mail to

iwoc2001@swen.uwatefloo,ca including the type of

the submission (technical paper, tool demo proposal,

working session proposal), the title, the list of authors,

the abstract, and a contact phone number. Please, do

not include the paper in the message. By return mail,

you will receive instructions on how to ftp 3our
submission.

Web sites: http://sere.ing.unisannio.it/iw_2001

htlp://www.swen.uwatedoo.ca/~iwpc2001

Theme

Comprehending programs is one of the core software engineering activities. Program

comprehension is needed when one maintains, reuses, migrates, teengineers, impects, or

enhances software systems. This workshop will gather practitioners and researchers from

academia, industry, and government, to review the current state of the practice, to report on

program understanding experiments, and to present issues and solutions in the general area of

program comprehension.

The workshop program will include technical papers, tool demos, and working sessions.

Authors are expected to present an accepted paper or proposals at the workshop in Toronto.

Technleai Papers

Papers related, but not limited, to the following topics am invited:

• Theories and models forsoftwarecomprehension;

• Program conaprdaension processes and strategies;

• Cognitive models in program comprehension;

• Expea'iments with comprehension mode_;

• Knowledge, program representation forms and repositories for program comprehension;

• Tools facilitating software comprehension;

• Comprehension during large scale maintenance, reengineeting, and migration;

• Reuse reengineering and concept assignment processes;

• Reverse engineering strategies to support comprehension;

• Innovativc technologiesforreverseengineering;

• Case, studies in reverse engineering, re_engineering, and maintenance with focus to program

undetUamding;

• Guidelines for facilitating program comprehension (based on observation and

experimentation);

• Computer Supported Collaborative Understanding (CSCU);

• Understanding systems built using distributed object technology;

• User interfaces, software v/sualization and animation;

• Understanding product line systems.

Papers should be original work, approximately 10 proceeding pages or 6000 words. Papers

must not have been previously published nor have been submitted to, or be in consideration

f_r, any journal book, or confezence. The workshop proceedings will be published by IEEE

Computer Society Press.

Tool demos

IWtK2 2001 final program willinclude demo sessions of tools for program comprehension. We

invite two page proposal submissions in IEEE format to he included in the workshop

proceedings. Proposals for tools demonstrations should include a description of the tool or

environment, its applicability to program comprehension, and a brief description of the

proposed demonstration. Specify the proposal as "Research Prototype" or "Vendor Tool".

Authorsof accepted demos are also invited to exhibit their tool at the ICSE 2001 exhibits and
tools fair.

Working sessions

We also invite proposals for working sessions (90 minutes eae.h) on any of the topics areas

mentioned above. Working sessions are designed around a specific theme and should be more

interactive than a panel session. Working session proposals (maximum one page in IEEE

proceedings format) should include the leader of the session (working session ehai 0 and the list

of co-authors with their short debate statements.

Research Prototype: Automated Analysis of Scientific & Engineering Semantics

Mark E. M. Stewart

Dynacs Engineering, lnc.

Cleveland, OH 44135, USA

Mark. E. St e wart@gr c. nasa. go v

Abstract

Physical and mathematical formulae and concepts are

fundamental elements of scientific and engineering

software. These classical equations and methods are time
tested, universally accepted, and relatively unambiguous.

The existence of this classical ontology suggests an ideal
problem for automated comprehension. This problem is

further motivated by the pervasive use of scientific code

and high code development costs.
To investigate code comprehension in this classical

knowledge domain, a research prototype has been devel-

oped. The prototype incorporates scientific domain
knowledge to recognize code properties (including units,
physical, and mathematical quanti!y). Also, the procedure

implements programming language semantics to propa-

gate these properties through the code. This prototype's
ability to elucidate code and detect errors will be demon-

strated with state of the art scientific codes.

1. Tool description

From a user's perspective, this procedure involves taking a
user's existing scientific or engineering code (1), adding

semantic declarations, and viewing/querying the analysis

results (Figure 1). Semantic declarations (distinguished by
"C?") identify primitive program variables using stan-

dardized technical terms (ie. mass, acceleration).

C? MA == mass

C? ACC _ acceleration

FF = MA*ACC (1)

From the analysis perspective, this procedure involves

three elements: a scientific semantics analysis procedure,
facilities for programming language semantics, and a

graphical user interface (GUI).

1.1 Scientific semantics analysis procedure

Classical mathematics emphasizes equations--lexical,
sequential expressions that quantify physical or mathe-

matical concepts. A parser is not only an effective way of

representing a large set of these physical equations, but a

parser can also efficiently recognize these equations in

program expressions.
In particular, (1) may be translated into expressions of

code properties, including, a physical quantity expression

(2), and a physical dimensions expression (3).

mass * acceleration (2)

(M) * (L'T**-2) (3)

Parsers recognize formulae in these translated phrases. For

example, a dynamics expert parser would include the rule

(4), be able to recognize the phrase (2) as Newton's law,
and annotate the data structure.

force _ mass * acceleration (4)

The units expert parser can reduce (3) and verify units.

These properties (Table 1) reflect the different aspects of

program statements that scientists and engineers analyze.

Parsers represent and recognize equations effectively

and easily for many properties. However, recognizing

mathematical rules is harder. For example, the discrete

difference, A_b, may involve many different physical

quantities in place of _b, and this generality precludes

recognition by lexical pattern matching alone. In fact,

parser recognition must be supplemented with additional

tests (5).

A_ = qb-_ (5)
{ Additional Tests }

Quantity-Physical force _ mass * accel

Quantity-Math A_b_ _b-

Value/Interval [1,50] ¢:: [0,49] + 1

Grid Location _Pi_ d_i+l+ dPi.l

Vector Analysis
Non-Dimensional

Dimensions

Units m _ rn/s * s

_p/A <== z/A + q>/A

L <==(L/T) * T

3

5

2

4

1

1

1

1

Table 1: Scientific semantic properties analyzed by the proce-
dure including sample equations, and number of parsers.

This is a preprint or reprint of a paper intended for presentation at a
conference. Because changes may be made before formal
publication, this is made available with the understanding that it will
not be cited or reproduced without the permission of the author.

1.2 Programming language semantics

These analyzed properties (Table I) reside in data
structures and must be propagated through a code as the

programming language dictates. For example, a result's

assignment to an array involves a transfer of properties

which must respect array organization and instruction

sequence. Other language issues include array reference
recognition, loop analysis, basic block termination,

subroutine call tree ordering, and external variables. The

parser paradigm of section 1.1 is not a particularly appro-
priate solution here; instead, non-general coding is re-

quired.

1.3 User Interface

The GUI allows the user control of these analyses, and
displays the user's code as well as the analysis results

(Figure 1). The user queries the analysis results by select-

ing text from the displayed code; the properties of vari-
ables, expressions, and arrays are displayed, with

derivations. A dictionary provides definitions of technical

terms. Semantic concepts may be searched for; navigation
tools assist in discovering results.

2. Demonstration test cases

The demonstration will involve test cases from a suite of

ten state of the art, practical, scientific and engineering

codes including an experimental data reduction code, one-,

two-, and three-dimensional computational fluid dynamics

(CFD) codes for turbomachinery problems, and a chemi-

cally reacting fluid flow code. The size of these codes is

typically 3-8k lee.
The test case results show 20-30°/, recognition I and

establish the feasibility of these analyses. Yet, additional

effort is required to reach the degree of recognition

required for a practical tool.

3. Bibliography

[1] M.E.M. Stewart, S. Townsend, "An Experiment in

Automated, Scientific-Code Semantic Analysis," AIAA-

99-3276, June 1999.

File Ol0tlonm'y Metltes HlghUght Build Lenguzoe Typeset About Help IW .J

mm(Q =_c21-a_)
ttut2(I) - t4ond - loin

J atOt3(I) - a')+dltodr-tOin

7 atOin(l) - tOin - dAodr

l: dmmdne Inlet steUe tempendune from Isentropl¢ rehltUons
| terse - gulsn(emaehl, 2. gun)
[tsin - tsrat't0in
J C? TSIN -- TEMPERATURE.,4BSOLUTE

/l e Ittsln(Q - tsln - dAodr
J 4..... determine |n!mt de nSl_,.veio¢lty, viscosity. Reynolds number

/ ,-holn-
| uin - emeehl"eqrl_iam'rgu*teln)

I , arhoul(I) - rhoin'uin
[J euln(i) - uin "

-'C vtsln - vlsrst'(teln4vlsrl)"vispwr
| C? uin -- VELOC.rry-sCALAR>

/ reck1 - rholn'uln*ohordx/vlsin al

OulnUty/Idath: DENSITY

v Location: Expression

v Unlts/OIm/14onOlm: slugs/It3, length---3 mass"1. ONE

v Axis: SCAI.AR

Deduced from equation:

DENSITY - PRESSURE IWQRK PUM _

Exper_se: GASDYHAMICS

File: tlow_inleLf Undefined: 14 Errors: 2---
J That fundamental physical quanUty, work.

/I'WORK TOTAL"
,__ Work p'_us kit.cUe en.rgy.

I//

Ambiguous:

j
Oeour ...[. Error

Ca.= 4
Fwd j Amblgultlee

Multi-Dlsplw t_ AssumptlOnSpedomsnce

S Not Under:rood: 1O

Figure 1: GUI display for the semantic analysis program. The top area displays the user's

code; the middle region explains selected text; the bottom area is a dictionary/lexicon.

